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Abstract

The combination of explicit Runge–Kutta time integration with the solution of an implicit system of equations, which
in earlier work demonstrated increased efficiency in computing compressible flow on highly stretched meshes, is extended
toward conditions where the free stream Mach number approaches zero. Expressing the inviscid flux Jacobians in terms of
Mach number, an artificial speed of sound as in low Mach number preconditioning is introduced into the Jacobians, lead-
ing to a consistent formulation of the implicit and explicit parts of the discrete equations. Besides extension to low Mach
number flows, the augmented Runge–Kutta/Implicit method allowed the admissible Courant–Friedrichs–Lewy number to
be increased from O(100) to O(1000). The implicit step introduced into the Runge–Kutta framework acts as a precondi-
tioner which now addresses both, the stiffness in the discrete equations associated with highly stretched meshes, and the
stiffness in the analytical equations associated with the disparity in the eigenvalues of the inviscid flux Jacobians. Integrated
into a multigrid algorithm, the method is applied to efficiently compute different cases of inviscid flow around airfoils at
various Mach numbers, and viscous turbulent airfoil flow with varying Mach and Reynolds number. Compared to well
tuned conventional methods, computation times are reduced by half an order of magnitude.
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1. Introduction

Over the last decades, numerical simulation of fluid flow has evolved from a topic only addressed in basic
research toward a tool routinely used for research and design. Today’s maturation of computational fluid
dynamics (CFD) has enabled the computation of flow around complex aerospace configurations such as com-
plete airplanes, helicopters, and spacecraft [1–4]. Furthermore, in the last years the combination of CFD with
other disciplines like structural mechanics and flight mechanics [5–7] has found widespread attention and
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application. This rapid development of numerical flow simulation was driven by both, the successful research
and subsequent advancement in efficient solution algorithms, and the continuous increase in available compu-
tational power. Having reached today’s level of maturity in numerical algorithms, it is tempting to assume that
further progress in the applicability of numerical methods may be guaranteed by solely relying on the sus-
tained development of computer technology. However, since relevant problem size will continue to increase
as fast as available hardware permits, a number of severe challenges in the development of numerical methods
for flow simulation remain. If the requirements of future complex, multidisciplinary applications shall be met,
these challenges have to be addressed rigorously, despite the progress in algorithmic development achieved so
far. Globally, without going into detail, these challenges may be summarized by the terms efficiency, robust-
ness, and accuracy.

With respect to efficiency, one of the major breakthroughs in numerical methods for flow simulation
was the introduction of multigrid [8,9], and for the solution of the inviscid equations, numerical methods
may now be considered as fairly effective, without stating that no further improvements may be necessary
or possible [10]. In contrast to that, methods for the computation of viscous flow can not be considered as
equally mature. This is mainly caused by the inadequacy of today’s methods to efficiently take into
account the stiffness of the discrete system of equations. Discrete stiffness is provoked by two distinct
sources [11]: the first results from the use of a scalar time step which is unable to cope with the disparity
in the propagation speeds of convective and acoustic modes. The second source of discrete stiffness is
introduced by the highly stretched computational meshes required for economical resolution of boundary
layers in high Reynolds number flows. This second source is of far more serious concern than the first,
since the corresponding high cell aspect ratios increase discrete stiffness by several orders of magnitude
in large portions of the computational domain, resulting in severe convergence problems and very high
computation times. One of the first successful attempts to address discrete geometrical stiffness is repre-
sented by the work of Martinelli [12], where coefficients of the implicit residual smoothing used in com-
bination with explicit Runge–Kutta time integration were formulated as functions of cell aspect ratio.
Subsequently, preconditioning of the discrete equations was used to mitigate the problem of discrete stiff-
ness [11,13,14]. In Ref. [15], the approach which proved to be highly successful to solve the 2D-Euler
equations [10] was extended to viscous flows, and favorable convergence rates were obtained for laminar
flow with Reynolds numbers as high as 80,000.

Recently, a Runge–Kutta/Implicit method was proposed where the widespread strategy of combining
multigrid with Runge–Kutta time integration [9,12,16] was augmented by replacing the implicit residual
smoothing with the solution of an implicit system using Symmetric Gauss–Seidel iteration [17]. Here, tur-
bulent flow around airfoils for Reynolds numbers in the order of 6 · 106 was computed, and the approach
reduced the number of iterations required for convergence by about a factor of 8, where CPU-time was
more than halved. Further work in Ref. [18] demonstrated the ability of the Runge–Kutta/Implicit method
to efficiently compute flows with Reynolds numbers up to the order of 108 and corresponding cell aspect
ratios of about 50,000.

Besides the efficiency in computing flow on meshes with very high cell aspect ratios, another matter of
concern in algorithmic research is the robustness of numerical methods with respect to the applicability to
both, compressible and incompressible flows. The difficulty here is caused by the disparity in the eigen-
values of the convective flux Jacobians in the compressible equations when approaching the incompressible
limit: at low speeds, the largest eigenvalue tends toward the speed of sound, whereas the smallest eigen-
value approaches zero. Thus, the condition number of the system of equations tends to infinity and the
stiffness of the system increases. Since this stiffness is not tied to a particular discretization, but solely asso-
ciated with the analytic equations, it was characterized as analytical stiffness in Ref. [11]. To overcome ana-
lytical stiffness when computing low-speed flows with compressible methods, usually the system of
compressible equations is ‘preconditioned’ for easier solution with iterative methods by multiplying the
time derivatives with a suitable matrix [19–22]. However, these low-speed preconditioning matrices may
become singular at stagnation points or in recirculation regions [23], and robustness of the methods
may be impaired [24].

As an alternative to preconditioning the compressible equations for low Mach number problems, codes pri-
marily designed for incompressible flows are extended toward the compressible flow regime [25–27]. When
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computing incompressible flows, such methods respect the constraint of a divergence-free velocity field by
solving a Poisson equation for pressure, which is not directly accounted for in the preconditioning approach
[28]. Using this pressure based approach, in general the strong conservation form of the governing equations is
not strictly respected [25–27], and up to now such methods did not gain widespread acceptance in the aero-
space community.

In the present work, the discrete stiffness associated with high aspect ratio cells and the analytic stiffness at
low Mach numbers shall be addressed by a unified approach. The Runge–Kutta/Implicit scheme introduced in
Ref. [17], where the solution of an implicit system of equations was embedded into the framework of Runge–
Kutta time integration, will serve as the basis for coping with discrete geometrical stiffness. For extending
compressible codes to the incompressible flow regime, in Refs. [28,29] a suitable equation for pressure was
derived by exploiting principles of pressure based methods, and the role of an artificial speed of sound to
appropriately scale terms of the numerical dissipation was discussed. To address analytical stiffness in the
Runge–Kutta/Implicit method, this artificial speed of sound will be introduced into the implicit system sim-
ilarly to the formulation of the pressure equation in Refs. [28,29] to allow efficient computation of low-speed
flows. The performance of the proposed method will be assessed by computing steady inviscid flow at various
Mach numbers, and steady viscous flows at different Reynolds and Mach numbers.

2. Governing equations

We consider the two-dimensional Navier–Stokes equations for compressible flow. For a control volume
fixed in time and space, the system of partial differential equations in integral form is given by
Z Z

Vol

oW

ot
dV þ

Z
S

F � ndS ¼ 0; ð1Þ
where W represents the vector of conservative variables, F is the flux-density tensor, and Vol, S, and n denote
volume, surface, and outward facing normal of the control volume. The flux density tensor F may be split into
an inviscid, convective part Fc and a viscous part Fv:
F ¼ Fc þ Fv; ð2Þ

where Fc and Fv are given by
Fc ¼

qq

quqþ pix

qvqþ piy

qHq

2
6664

3
7775; Fv ¼

0

sxxix þ sxy iy

sxy ix þ syy iy

usxx þ vsxy þ k oT
ox

� �
ix þ usxy þ vsyy þ k oT

oy

� �
iy

2
66664

3
77775; ð3Þ
where q is the velocity vector with Cartesian components u, v, and ix, iy denote the unit vectors in direction of
the Cartesian coordinates x and y. The variables q, p, H, T represent density, pressure, total specific enthalpy,
and temperature, k is the coefficient of thermal heat conductivity, and sxx, syy, sxy are the viscous stress tensor
components.

In order to close the system given by Eq. (1), the equation of state
p
q
¼ R � T ð4Þ
is used with R as specific gas constant.

3. Basic solution scheme

The basic solution scheme employs a cell centered, finite volume space discretization on structured meshes
[30], and time integration is achieved by combining an explicit Runge–Kutta scheme with the solution of an
implicit system of equations [17]. Using the finite volume technique for space discretization, a semi-discrete
form of Eq. (1) may be written as
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Vol
oW

ot
þ
X

all faces

F � nS ¼ 0; ð5Þ
where Vol now represents the volume of a computational cell and S is the area of a cell face. Eq. (5) can be
rearranged to
oW

ot
þ 1

Vol

X
all faces

FnS ¼ 0; ð6Þ
where Fn is the flux density vector corresponding to the direction normal to the cell face. For evaluation of the
flux density vector on a cell face, the flux difference splitting (FDS) technique [31] is used. The convective part
of the flux density vector Fc normal to a cell interface may then be written as:
Fc ¼
1

2
FL þ FR
� �

� 1

2
jAnj � DW ; ð7Þ
where FL and FR are the left and right states of the inviscid flux density vector normal to the cell interface, An

is the corresponding flux Jacobian, and jAnj represents the Jacobian with the modulus of all eigenvalues. The
term DW denotes differences in conservative variables on the left side L and right side R of a cell interface,
giving DW = WR �WL, where the normal vector n at a cell interface is pointing from left to right when
the cell boundary is traversed in a mathematically positive sense. Following Ref. [30], jAnj Æ DW is expressed
in terms of the cell interface Mach number M0, with M0 defined as:
Mo ¼ minðjM j; 1Þ � signðMÞ: ð8Þ

The resulting expressions of jAnj Æ DW are summarized in Table 1 as dissipative flux differences DF for the con-
tinuity, momentum, and energy equations. In Table 1, qn denotes the velocity normal to the cell interface de-
fined as qn = q Æ n, where n = (nx,ny)T, and the operator D indicates differences of variables between right and
left states of the cell interface. For second order accuracy, the variables q, qu, qv, qH are reconstructed, and
the Symmetric LImited Positive (SLIP) limiter [32] is used according to the implementation outlined in Ref.
[33]. Discretization of the viscous terms Fv is performed by central differences, and implementation details may
be found in Refs. [16,30].

In the basic code, time integration of Eq. (6) is achieved by a Runge–Kutta/Implicit method, which com-
bines an explicit 5-stage Runge–Kutta scheme with the solution of an implicit system of equations. The
Runge–Kutta/Implicit time integration method was first formulated in Ref. [17] in order to alleviate the Cou-
rant–Friedrichs–Lewy (CFL) restriction of the explicit Runge–Kutta scheme and to address discrete stiffness.
As outlined in Refs. [34,35], an implicit step also substantially increases the damping properties of the basic
Runge–Kutta time integration, provided the implicit system is solved without factorization error. Thus, when
using a properly constructed Runge–Kutta/Implicit method as relaxation scheme in a multigrid algorithm,
considerable improvements in convergence rates are achievable [17]. For completeness, the construction of
the Runge–Kutta/Implicit method will be summarized following the outline in Ref. [17].

Using a purely explicit Runge–Kutta scheme, conservative variables W are updated by
W
ðmÞ
i;j ¼W

ð0Þ
i;j þ aðmÞ � Rðm�1Þ

i;j ; ð9Þ

where the superscripts (m) denote the stage count with m running from 1 to the maximum number of stages,
the subscripts i, j correspond to the location of control volumes in the flow field, and a(m) is the stage coefficient
of the (m)-stage. The vector R

ðm�1Þ
i;j represents the conservative residuals of continuity, momentum and energy

equations evaluated using the variables of the previous (m � 1)-stage:
1
ifference splitting dissipation expanded in terms of Mach number

1
c ð1� jM0jÞDp þ qM0Dqn þ jqnjDq

nxM0Dp þ 1
c uð1� jM0jÞDp þ nxqcð1� jM0jÞDqn þ quM0Dqn þ jqnjDqu

nyM0Dp þ 1
c vð1� jM0jÞDp þ nyqcð1� jM0jÞDqn þ qvM0Dqn þ jqnjDqv
1
c Hð1� jM0jÞDp þ qnM0Dp þ qnqcð1� jM0jÞDqn þ qHM0Dqn þ jqnjDqE

min(jMj, 1) Æ sign(M).
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R
ðm�1Þ
i;j ¼ � dti;j

Voli;j

X
all faces

FnðWm�1ÞS; ð10Þ
with dti, j as the local time step of cell i, j.
To accelerate convergence toward steady state, at each stage the explicit Runge–Kutta time stepping of Eq.

(9) is augmented by an implicit step [17], which is derived from an implicit formulation of Eq. (6):
oW

ot
þ 1

Vol

X
all faces

Fðnþ1Þ
n S ¼ 0; ð11Þ
where Fðnþ1Þ
n is evaluated at the new time level (n + 1). Linearizing Fðnþ1Þ

n about the current time level (n), one
obtains
Fðnþ1Þ
n ¼ FðnÞn þ

oFn

oW

� �
dW ¼ FðnÞn þ AndW ; ð12Þ
with dW defining the time difference of conservative variables, and An is as denoted previously the flux Jaco-
bian in the direction normal to a cell face S:
dW ¼W ðnþ1Þ �W ðnÞ; An ¼
oFn

oW
: ð13Þ
Substituting Eq. (12) into Eq. (11) and replacing the time derivative in Eq. (11) with a finite difference approx-
imation one obtains
dW

dt
þ 1

Vol

X
all faces

AndWS ¼ � 1

Vol

X
all faces

FðnÞn S: ð14Þ
Rearranging leads to
I þ dt
Vol

X
all faces

AnS

 !
dW ¼ � dt

Vol

X
all faces

FðnÞn S ¼ RðnÞ; ð15Þ
where R(n) has been introduced to denote the residual at current time level (n), and I represents the Identity
matrix. A consistent linearization of the second order accurate space discretization of the explicit residual
R(n) would require a second order discretization for the implicit operator on the left hand side, resulting in
Newton’s method for infinitely large time steps [36]. However, such methods incur very large memory require-
ments due to the necessary storage of neighbor-of-neighbor information, and robustness problems occur as
long as the method is not sufficiently close to its zone of attraction, leading to substantial difficulties in the
start-up process of a computation. Therefore, in Ref. [17] only a first order representation for the implicit
operator is employed, as is commonly practiced when constructing implicit iterative methods.

The matrix An in Eq. (15) has real eigenvalues and may be split into two matrices Aþn and A�n ,
Aþn ¼ 0:5ðAn þ jAnjÞ; A�n ¼ 0:5ðAn � jAnjÞ; ð16Þ

and with definition of Eq. (16), the implicit system of Eq. (15) for dW may be rewritten as:
I þ dti;j

Voli;j

X
all faces

Aþn S

 !
dW i;j ¼ R

ðnÞ
i;j �

dti;j

Voli;j

X
all faces

A�n dWNBS; ð17Þ
where indices i, j denote the current cell, and NB are all direct neighbors of cell i, j. In Eq. (17) A�n dW repre-
sents the flux density change associated with waves having negative wave speed, i.e. waves that enter cell i, j

from outside. Only neighbor cells NB can contribute to these changes in flux density. Similarly, Aþn dW rep-
resents flux density changes associated with positive wave speeds, i.e. waves which leave cell i, j. These flux
density changes are determined only by information from within cell i, j.

Eq. (17) is combined with the explicit Runge–Kutta scheme of Eq. (9) by interpreting the changes of con-
servative variables dW in Eq. (17) as new residuals ~R
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I þ dti;j

Voli;j

X
all faces

Aþn S

 !
~Ri;j ¼ R

ðm�1Þ
i;j � dti;j

Voli;j

X
all faces

A�n
~RNBS: ð18Þ
Note that the residual R(n) of current time level (n) in Eq. (17) has been replaced by the residual of the previous
Runge–Kutta stage R(m�1). The new residuals ~R obtained from the solution of Eq. (18) are then used in the
Runge–Kutta framework given by Eq. (9) for updating conservative variables:
W
ðmÞ
i;j ¼W

ð0Þ
i;j þ aðmÞ � ~Ri;j: ð19Þ
Despite the use of only a first order approximation on the left hand side, storing the split flux Jacobians
matrices Aþn and A�n in Eq. (17) or (18) still requires a substantial amount of computational memory.
For solution of a 2D (3D) problem, these are 4 · 4 (5 · 5) matrices, requiring storage of 32 (50) variables
per cell face. Additionally, the necessary matrix times vector operations are associated with a high operation
count, and as a consequence implicit methods based on Eq. (17) are generally not applied to solve for prac-
tical problems. Instead, LU schemes with simplified Jacobians [37,38] or matrix free methods [39] are fre-
quently employed. However, these simplifications lead to deterioration of damping properties, resulting in
degraded convergence especially when solving the Navier–Stokes equations, even though sometimes high
CFL numbers can be used. In contrast to that, in Ref. [17] storage requirements are reduced without
any further approximations by formulating the implicit system in primitive variables U = [q,p,u,v]T and
expressing the flux Jacobians in terms of Mach number [30]. The implicit system of Eq. (17) formulated
in primitive variables reads:
I þ dti;j

Voli;j

X
all faces

Pþn S

 !
dU i;j ¼ Q

ðnÞ
i;j �

dti;j

Voli;j

X
all faces

P�n dUNBS; ð20Þ
where dU denotes the temporal changes of primitive variables, and Q(n) represents the explicit residuals in
primitive variables computed from the conservative explicit residuals R(n) by using the associated Jacobians
to transform from conservative to primitive variables:
Q
ðnÞ
i;j ¼

oU

oW
R
ðnÞ
i;j : ð21Þ
The matrices Pþn and P�n in Eq. (20) are the flux Jacobians in primitive variables, which correspond to the def-
inition in conservative variables of Eq. (16). The product of Pþn and P�n with the changes dU can be expressed
in an efficient, storage reducing way [17]:
Pþn � dU ¼

ðqn þ jqnjÞdqþ 1
c ð1� jM0jÞdp þ qð1þM0Þdqn

ðqn þ jqnjÞdp þ ðc� 1Þ h
c ð1� jM0jÞdp þ cpð1þM0Þdqn

ðqn þ jqnjÞduþ nx
1
q ð1þM0Þdp þ nxcð1� jM0jÞdqn

ðqn þ jqnjÞdvþ ny
1
q ð1þM0Þdp þ nycð1� jM0jÞdqn

2
66664

3
77775;

P�n � dU ¼

ðqn � jqnjÞdq� 1
c ð1� jM0jÞdp þ qð1�M0Þdqn

ðqn � jqnjÞdp � ðc� 1Þ h
c ð1� jM0jÞdp þ cpð1�M0Þdqn

ðqn � jqnjÞduþ nx
1
q ð1�M0Þdp � nxcð1� jM0jÞdqn

ðqn � jqnjÞdvþ ny
1
q ð1�M0Þdp � nyc 1� M0j jð Þdqn

2
66664

3
77775;

ð22Þ
where the temporal change of normal velocity dqn is defined as:
dqn ¼ nxduþ nydv; ð23Þ
and c, h, c denote the ratio of specific heats, specific enthalpy, and speed of sound, respectively.
The definitions for P+dU and P�dU by Eq. (22) allow an implementation of the implicit scheme of Eq. (20)

with a comparatively low computational effort: only the expressions jqnj, M0, (1 � jM0j) are pre-computed and
stored for each cell face, all other components can efficiently be recomputed whenever necessary. The contri-
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butions of the viscous flux Jacobians are incorporated with the definitions outlined in Ref. [40] for primitive
variables.

The implicit system in primitive variables is combined with the basic Runge–Kutta scheme analogously to
Eq. (18) by interpreting the changes dU as new primitive residuals ~Q:
I þ dti;j

Voli;j

X
all faces

Pþn S

 !
~Qi;j ¼ Q

ðm�1Þ
i;j � dti;j

Voli;j

X
all faces

P�n
~QNBS: ð24Þ
Solution of Eq. (24) is achieved with symmetric lexicographic Gauss–Seidel (SGS) sweeps, where the explicit
residuals Q(m�1) are used as initial conditions for the unknown residuals ~Q [17]. After solution of Eq. (24), the
new residuals ~Q are transformed to conservative residuals ~R by
~Ri;j ¼
oW

oU
~Qi;j; ð25Þ
to update conservative variables in the Runge–Kutta framework according to Eq. (19).
This Runge–Kutta/Implicit time integration, comprised of the Runge–Kutta scheme of Eq. (19) combined

with the solution of the fully implicit system of Eq. (24), allowed CFL numbers of O(1 00) [17,18]. Time inte-
gration is further enhanced by employing a multigrid algorithm following the ideas of Jameson [9]. The influ-
ence of turbulence is modeled according to Baldwin and Lomax [41].

In Ref. [17], this basic method was applied to compute two-dimensional transonic, turbulent flow
around airfoils for Reynolds numbers in the range of Re1 = 6.5 · 106. Using meshes of C-type topology,
convergence rates of about 0.85 were obtained for residual reduction by more than 12 orders of magni-
tude, and computation times were more than halved compared to other methods commonly in use
[17,18].
4. Extension of the basic approach to low Mach number flow

To use compressible methods for the computation of nearly incompressible flows where M! 0, it is well
known that the artificial dissipation of the spatial discretization needs to be scaled appropriately [19], since the
discrete equations support pressure disturbances of O(M), in contrast to the analytical equations which only
support O(M2) disturbances [42,43]. For the FDS-discretization of Eq. (7) this scaling can easily be achieved
by replacing the speed of sound c in Table 1 by an artificial speed of sound c 0 [30], which is of the order of the
mean flow speed [19,42,43]. This strongly amplifies the dominance of the pressure differences multiplied by
1
c0 ð1� jM0jÞ given in Table 1 [28–30].

Using the appropriately scaled dissipative terms in the explicit residual, one may now expect an implicit
scheme as represented by Eq. (15) to enable the computation of incompressible flow, since the disparity in
propagation speeds should be taken into account by solving the implicit system. However, when combin-
ing the implicit step with the Runge–Kutta scheme, the implicit system is not solved until convergence, but
only approximately with three SGS-sweeps [17,18]. Consequently, any stiffness caused by a disparity in
propagation speeds may reduce the efficiency of the limited number of SGS-sweeps and will result in lower
CFL-bounds. Since in this work only steady flows are computed and local time stepping is used as an
acceleration technique, time accuracy is destroyed. Therefore, a manipulation of the propagation speeds
may be considered as further means to alleviate the stiffness of the implicit system. As indicated above,
the implicit operator on the left hand side of Eq. (15) should match the explicit right hand side as closely
as possible. Consequently, when for low Mach number flows the artificial speed of sound c 0 is introduced
into the discretization of the explicit residual [30], this should be matched accordingly in the implicit oper-
ator on the left hand side in order to obtain similar efficiency to that in Ref. [17]. Note that for the pres-
sure equation of the implicit system (24), this scaling leads to a similar formulation as already employed in
Refs. [28,29], where, however, only the pressure equation was regarded and not the whole system of
equations.
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The expressions Pþn � dU and P�n � dU in Eq. (22) then become
Pþn � dU ¼

ðqn þ jqnjÞdqþ 1
c0 ð1� jM0jÞdp þ qð1þM0Þdqn

ðqn þ jqnjÞdp þ ðc� 1Þ h
c0 ð1� jM0jÞdp þ cpð1þM0Þdqn

ðqn þ jqnjÞduþ nx
1
q ð1þM0Þdp þ nxc0ð1� jM0jÞdqn

ðqn þ jqnjÞdvþ ny
1
q ð1þM0Þdp þ nyc0ð1� jM0jÞdqn

2
66664

3
77775;

P�n � dU ¼

ðqn � jqnjÞdq� 1
c0 ð1� jM0jÞdp þ qð1�M0Þdqn

ðqn � jqnjÞdp � ðc� 1Þ h
c0 ð1� jM0jÞdp þ cpð1�M0Þdqn

ðqn � jqnjÞduþ nx
1
q ð1�M0Þdp � nxc0ð1� jM0jÞdqn

ðqn � jqnjÞdvþ ny
1
q ð1�M0Þdp � nyc0ð1� jM0jÞdqn

2
66664

3
77775:

ð26Þ
The artificial speed of sound c 0 in Eq. (26) is evaluated as [28,30]:
c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q2 þM2

r c2

q
;

a ¼ 1

2
ð1�M2

r Þ;
ð27Þ
where q represents the flow speed, and Mr is a reference Mach number defined as
M2
r ¼ min max

q2

c2
; k

q2
1

c2
1

� �
; 1

	 

; ð28Þ
with k set to unity.
When using the artificial speed of sound in Eq. [26], for low speed flows the terms including pressure fluc-

tuations on the left hand side of the discrete equations are strongly amplified, thus matching the behavior of
the corresponding artificial dissipative terms on the right hand side. Note, however, that in the scaling term
h
c0 ð1� jM0jÞ of the pressure equation, the specific enthalpy h has to be evaluated with the physical speed of
sound to achieve this amplification [29]. The artificial speed of sound c 0 is also used to compute the admissible
local time step, which leads to a substantial increase in dt when computing low Mach number flows [19]. Fur-
thermore, for computation of low Mach number flows, the initial values of the unknown residuals ~Q in Eq.
(24) are set to zero when solving the implicit system by SGS sweeps, thus deviating from the practice of Refs.
[17,18], where the explicit residuals Q(m�1) were used for initialization.

The Runge–Kutta/Implicit scheme, where the implicit step of Eq. (18) is combined with the explicit Runge–
Kutta scheme of Eq. (9), may be viewed as using a preconditioner P to the Runge–Kutta scheme:
W
ðmÞ
i;j ¼W

ð0Þ
i;j þ aðmÞ � PR

ðm�1Þ
i;j ; ð29Þ
where the inverse of preconditioner P is given by the left hand side of Eq. (15)
P�1 ¼ I þ dt
Vol

X
all faces

AnS

 !
: ð30Þ
In the actual implementation, P�1 is defined by Eq. (24) and Eqs. (21), (25) for transformation to and from
primitive variables. When employing Eq. (26) to include the artificial speed of sound c 0 for the low Mach num-
ber extension, the preconditioner P defined by Eq. (30) then addresses both, discrete stiffness due to high cell
aspect ratios, and analytical stiffness due to the disparity in the eigenvalues of the flux Jacobians.

5. Computational results

For all computations presented in this study, a 4-level W-cycle is employed in the multigrid algorithm, and
the corresponding coarse meshes are created by successively omitting every second grid line. On the finest
mesh, a second order space discretization is employed, which on coarse meshes is reduced to first order.
For time integration generally a 5 stage Runge–Kutta scheme with coefficients of Ref. [44] for second order
spatial accuracy is employed, combined with solution of the implicit system (24) at each stage. Unless noted
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otherwise, three Symmetric Gauss–Seidel sweeps are used for iterative solution of the implicit system given by
Eq. (24) with initializing the unknowns by zero. All computations presented are performed on a SGI Octane
workstation using a single 360 MHz processor.

5.1. Addressing analytical stiffness for low mach number flows

First, the proposed method is applied to compute inviscid flow around the NACA 0012 airfoil at various
Mach numbers. The computational mesh is an O-mesh with 160 cells around the airfoil and 32 cells in normal
direction. Fig. 1 shows pressure distributions obtained for free stream conditions M1 = 0.001, a = 2.0�;
M1 = 0.63, a = 2.0�; and M1 = 0.8, a = 1.25�.

In Fig. 2, convergence histories are displayed for a residual reduction by 12 orders of magnitude. As is com-
mon practice with implicit methods, the CFL number is increased to its final value after a start-up phase [36].
For all inviscid cases, during the first 4 multigrid cycles the CFL number is set to CFL = 40, and then for all
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Fig. 1. Surface pressure distributions for inviscid flow around NACA0012 airfoil at different free stream Mach numbers.
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subsequent iterations it is raised to CFL = 1000. The corresponding residuals are normalized with the residual
of the first iteration for each case. For most of the purely subsonic cases, convergence rates between 0.45 and
0.5 are obtained, and under transonic conditions the observed rate is 0.65. The deterioration in convergence
for the transonic case is suspected to be caused by the limiter function, expressed by the peaks in the corre-
sponding convergence history. For the nearly incompressible case at M1 = 0.001, convergence stalls after nine
orders of magnitude in residual reduction, caused by appearance of round-off errors when reducing the free
stream Mach number [45]. This is further illustrated in Fig. 3, where convergence histories are shown for free
stream Mach numbers M1 = 0.001; 0.01; 0.1; 0.3. As can be seen in Fig. 3, the level where the residual stalls is
reduced with increasing Mach number: forM1P 0.1 the residual is decreased by twelve orders of magnitude
without showing round-off errors. For Mach numbers of M1 6 0.1, the convergence rate becomes indepen-
dent of the Mach number until reaching machine zero. Removal of round-off errors at low Mach numbers
may be achieved by introducing a gauge pressure [45].

Second, a Mach number variation is performed for viscous, turbulent flow employing the present method.
Here, the same structured C-mesh around the RAE2822 airfoil as in Ref. [17] is used with 64 cells in normal
direction, 320 cells in circumferential direction, and 256 cells are located on the airfoil surface. As in the invis-
cid cases, the 5 stage Runge–Kutta scheme is used with a final CFL number of CFL = 1000, but start-up is
achieved with 8 multigrid cycles and a CFL number of CFL = 16, corresponding to the practice also employed
in Ref. [17]. No attempts were made to optimize the start-up procedure for different cases, but the same pro-
cedure is used for all viscous computations considered in this study. Note that in Ref. [17] after the first 8 mul-
tigrid cycles the CFL number could only be raised to CFL = 160. Mach number is successively reduced from
M1 = 0.75 to M1 = 0.001, with the Reynolds number set to Re1 = 6.5 · 106 and the angle of attack held
fixed at a = 2.8�. In Fig. 4, the computed pressure distributions are displayed showing a qualitative variation
with Mach number as in the inviscid investigations. Corresponding convergence histories are displayed in
Fig. 5, with the residuals normalized as for the inviscid cases. Reducing residuals by eight orders of magnitude,
convergence rates vary between 0.67 and 0.75. Similarly to the inviscid cases, for M1 6 0.1 convergence
becomes independent of the free stream Mach number, confirming the successful extension of the method
to compute nearly incompressible flows.

5.2. Addressing discrete stiffness for Reynolds number variation

The computations above demonstrate the ability of the present method to alleviate analytical stiffness in
low Mach number flows. Next, discrete stiffness on meshes with high aspect ratio cells will be addressed.
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A detailed study with respect to discrete stiffness was conducted in Ref. [18], where the performance of the
basic method was investigated by computing flows at various Reynolds numbers. In that study, starting from
the subsonic conditions of Case 1 in the investigations of the RAE2822 airfoil by Cook et al. [46], at fixed
Mach number and angle of attack, Reynolds number was varied by more than an order of magnitude from
Re = 5.7 · 106 to 100 · 106. For the computational meshes a C-topology with 312 cells along the airfoil, 56
cells in the wake region, and 88 cells in normal direction was used. Keeping topology and number of cells iden-
tical, the meshes were adapted to the corresponding Reynolds numbers, leading to cell aspect ratios varying
from about 3000 to over 50,000 [47]. These meshes are also used here to investigate the influence of introduc-
ing an artificial speed of sound according to Eq. (26). Following Ref. [18], a pure second order reconstruction
of variables without limiting is employed to prevent distortion of convergence by numerical noise in the lim-
iting procedure on different meshes. Fig. 6 shows a comparison of results from Ref. [18] and the present
method. Similar to previous cases, for the present method the admissible CFL number is increased from



0 100 200 300 400

10-12

10-10

10-8

10-6

10-4

10-2

100 ∞

RAE 2822

α °

cycles

= 1.93

M = 0.676
mesh 368x88
Re-variation

R
es

(r
)

Case 1

Solid: rk5-i(c'), CFL=1000
Dashed: rk5-i, CFL=160

Reynolds-number:

= 5.7x10**6

= 20.0x10**6

= 57.0x10**6

= 100.0x10**6

Fig. 6. Convergence histories for Reynolds number variation, starting from Case 1 (rk5-i(c 0): present method with artificial speed of
sound, CFL = 1000; rk5-i: basic method without artificial speed of sound, CFL = 160).

890 C.-C. Rossow / Journal of Computational Physics 220 (2007) 879–899
CFL = 160 to CFL = 1000. For the lowest Reynolds number of Re = 5.7 · 106, the present method reduces
the number of multigrid cycles required for convergence by about 25% compared to the basic method, and
for the highest Reynolds number of Re = 100 · 106 the reduction amounts to almost 50%. This is a substantial
improvement with respect to the basic method, which already showed superior performance in computing
flows on highly stretched meshes [18].

To address both, analytical and discrete stiffness, the study of Reynolds number variation is extended to the
computation of nearly incompressible flow. Using the same meshes and Reynolds numbers as before, the
Mach number is reduced to M1 = 0.001. Results are displayed in Fig. 7, and it can be seen that equivalent
efficiency as in the compressible cases is achieved.

5.3. Efficiency of the Runge–Kutta/Implicit scheme

To investigate the performance of the present method compared to the basic scheme, the same compressible
flow cases as in Ref. [17] are computed. These cases comprise Case 1, Case 9, and Case 10 from the investi-
gations of Cook et al. [46] for turbulent flow around the RAE2822 airfoil. For Case 1, the flow field remains
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Table 2
Free stream conditions of test cases for RAE2822 airfoil

Case M1 a [deg] Re xtr/l

Case 1 0.676 1.93 5,700,000 0.11
Case 9 0.730 2.80 6,500,000 0.03
Case 10 0.750 2.80 6,200,000 0.03
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mainly subsonic and no shock wave occurs. Case 9 exhibits a fairly strong shock wave on the upper surface of
the airfoil, and for Case 10, the shock strength is increased, leading to substantial separation behind the shock,
which often severely degrades convergence of numerical methods. The different free stream conditions are
listed in Table 2. The computational grid with 320 · 64 cells is identical to that used for the Mach number
variation with results displayed in Figs. 3 and 4.

5.3.1. Comparison of basic and present method

To establish a sound basis for comparison of computational efficiency, all methods are implemented into
the same computational framework, and computations are always made on the same SGI Octane workstation.
Thus, the only difference between the present and the basic method is the employment of Eq. (26) instead of
Eq. (22), all other components of the code are identical. In the present method, after start-up a CFL number of
CFL = 1000 could be used for all cases, which is a clear improvement with respect to the basic method, where
the allowable CFL number could only be increased to a maximum of CFL = 160 [17]. The pressure distribu-
tions obtained with the present method are very similar to those presented in Ref. [17] with the basic method
and will not be repeated here. Table 3 displays total force coefficients obtained with both, the basic method
[17], and the method proposed in this study using the artificial speed of sound in Eq. (26) and Table 1. Results
marked with ‘rk5-i’ denote the use of a 5-stage Runge–Kutta scheme combined with the implicit system of Eq.
(24), corresponding to the results of Ref. [17] with the basic Runge–Kutta/Implicit method. The indication
‘rk5-i(c’)’ denotes computations using the present method with artificial speed of sound according to Eq.
(26). The results of both methods are quite similar and agree well with numerical results presented elsewhere
in the literature [16,33,48]. Note that the differences in steady state results are caused by the use of the artificial
speed of sound in the spatial discretization of Table 1 and not by employing Eq. (26) instead of Eq. (22), since
the converged solution is independent from time integration [36]. Using an artificial speed of sound in the spa-
tial discretization is necessary when employing low speed preconditioning for the computation of nearly
incompressible flows [19–22]. In the transonic speed regime this influence becomes negligible, as confirmed
by the similarity in steady state results of present and basic method.

Figs. 8–10 show the corresponding convergence histories for a residual reduction by 13 orders of magni-
tude. As was outlined in Ref. [17], the basic method reduced necessary computation times by more than a fac-
tor of 2 compared to conventional, well tuned methods. For the present method, the implementation of the
artificial speed of sound c 0 into the discrete equations is performed with almost no additional computational
effort, and the reduction in the number of multigrid cycles by about 15% using the present method therefore
directly corresponds to a similar reduction of CPU time when compared to the basic method. Table 4 gives a
detailed comparison of the basic method ‘rk5-i’ and the present method ‘rk5-i(c 0)’with respect to CPU time,
number of iterations, and convergence rate. Additionally, corresponding data of a conventional, well tuned
method following Refs. [32,33,30] with Runge–Kutta time stepping, implicit residual smoothing [12], and mul-
Table 3
Total forces computed for RAE2822 airfoil

Case Method cl cd_total cd_pressure cd_friction

Case 1
rk5� i

rk5� iðc0Þ
0:60875

0:60863

0:00840

0:00832

0:00246

0:00242

0:00594

0:00590

Case 9
rk5� i

rk5� iðc0Þ
0:85260

0:85249

0:01784

0:01778

0:01223

0:01221

0:00561

0:00557

Case 10
rk5� i

rk5� iðc0Þ
0:84503

0:84535

0:02866

0:02866

0:02316

0:02319

0:00550

0:00547
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tigrid [16] are included in Table 4. For consistent comparison, this well tuned conventional method is imple-
mented into the same computational framework as basic and present method, and efficiency is measured on
the same machine. These results are marked by ‘rk5/3-s’, denoting a 5-stage Runge–Kutta scheme with the
standard smoothing of Ref. [12], where the artificial viscosity is evaluated only at every odd stage to increase
efficiency [12,16], and CFL = 7.5 [16,30,33]. The spatial discretization of method ‘rk5/3-s’ is the same as that
of method ‘rk5-i, therefore steady state results of the two methods are identical [17]. With respect to the ref-
erence method ‘rk5/3-s’, for all cases the present method reduces CPU time by roughly a factor of 2.5.

5.3.2. Influence of number of Runge–Kutta stages, artificial speed of sound, and initialization of implicit system

In Ref. [17], a 3 stage Runge–Kutta scheme with coefficients [0.15, 0.4, 1.0] was employed for further reduc-
tion of CPU-time with respect to the basic 5 stage scheme. However, in Ref. [17] the admissible CFL number
had to be reduced from CFL = 160 to CFL = 100, leading to an increased number of iterations, see results
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Table 4
Computational effort required for RAE 2822 test cases

CPU time [s] # iterations Convergence rate

Case 1

rk5/3-s 2349 1191 0.975
rk5-i 1206 142 0.801
rk5-i(c 0) 1047 121 0.779
rk3-i 1023 190 0.854
rk3-i(c 0) 702 117 0.776

Case 9

rk5/3-s 3129 1585 0.981
rk5-i 1495 176 0.843
rk5-i(c 0) 1210 140 0.807
rk3-i 1337 248 0.886
rk3-i(c 0) 842 137 0.803

Case 10

rk5/3-s 3929 2019 0.985
rk5-i 1818 214 0.869
rk5-i(c 0) 1480 171 0.839
rk3-i 1552 288 0.901
rk3-i(c 0) 997 168 0.836
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denoted by ‘rk3-i’ in Table 4. Regarding the increased computational efficiency of the three stage scheme, a
similar study is performed for the present method with artificial speed of sound. Using the same 3 stage scheme
as in Ref. [17] in combination with the implicit system of Eqs. (24) and (26), the CFL number can still be kept
at CFL = 1000, as for the 5 stage scheme. This indicates that in contrast to the basic method, the present
method essentially removes the CFL-restriction on the explicit Runge–Kutta scheme. Due to the identical
CFL number of 3 stage and 5 stage scheme, the corresponding convergence rates are also almost identical,
with the 3 stage scheme requiring even a little fewer multigrid cycles, see Figs. 11–13. This leads to a significant
reduction in CPU time, as can be seen from the corresponding results denoted by ‘rk3-i(c 0)’ in Table 4. Note
that the convergence of lift is also identical for 3 stage and 5 stage scheme. With respect to the conventional
reference scheme ‘rk5/3-s’, computation times are reduced by factors of 3.5–4 with method ‘rk3-i(c 0)’.

From these results, the question arises whether the possible increase in CFL number may be attributed to
the introduction of the artificial speed of sound. However at transonic speeds, the difference between physical
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speed of sound and artificial speed of sound becomes smaller with increasing Mach number, and for M > 1,
both speeds are identical. Thus, another reason is suspected, which is related to the initialization of the
approximate solution of Eq. (24) by SGS-sweeps. Fig. 14 shows convergence histories for computation of Case
9 with the basic method using the original initialization, the basic method with the initialization of the present
method, and with the present method. For the basic method of Ref. [17] with the initialization of the SGS-
sweeps by explicit residuals, the CFL number was limited to CFL = 160. Changing this initialization to that
of the present method by setting the unknowns to zero, the CFL number could be raised to CFL = 1000. The
convergence behavior observed in Fig. 14 for Case 9 with the different methods is similar for analogous com-
putations of Cases 1 and 10, thus those results are not presented.

In Figs. 11–13 it is demonstrated that for computation of compressible flows the convergence behavior of
the present method for a 3 stage and 5 stage scheme is similar with CFL = 1000. To confirm this for a broader
range of applications, the cases of Mach number variation for inviscid and viscous flow, and the cases for Rey-
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nolds number variation are repeated with the 3 stage scheme. The convergence histories obtained are again
almost identical to those of the 5 stage scheme, resulting in the substantial gains in computational efficiency
noted above.

5.3.3. Variation of number of symmetric Gauss–Seidel sweeps

To investigate further possibilities for increasing computational efficiency, the number of Symmetric
Gauss–Seidel sweeps when solving Eq. (24) is varied. As a test case, the conditions of Case 9 are used com-
puting the flow around the RAE2822 airfoil on the mesh with 320x64 cells, and the scheme ‘rk3-i(c 0)’ is used
with a CFL number of CFL = 1000. The number of SGS-sweeps is varied between 1 and 8, and the corre-
sponding results with respect to CPU-time, number of iterations, and convergence rate are listed in Table
5. As can be seen from Table 5, raising the number of SGS-sweeps above 3 only has a moderate effect on



Table 5
Variation of number of Symmetric Gauss–Seidel (SGS) sweeps using 3 stage Runge–Kutta/Implicit scheme for computation of Case 9

# SGS-iterations CPU time [s] # iterations Convergence rate

1 565 180 0.846
2 635 147 0.815
3 842 137 0.803
4 884 132 0.796
6 1244 128 0.791
8 1522 126 0.788

Table 6
Efficiency of 3 stage Runge–Kutta/Implicit scheme with variation of SGS-sweeps for RAE2822 test cases

Case, # SGS-sweeps CPU time [s] # iterations Convergence rate

Case 1, #SGS = 1 505 145 0.813
Case 1, #SGS = 3 702 117 0.776

Case 9, #SGS = 1 565 180 0.846
Case 9, #SGS = 3 842 137 0.803

Case 10, #SGS = 1 736 211 0.867
Case 10, #SGS = 3 997 168 0.836
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improving convergence; however the CPU-time required increases significantly. In contrast to that, reducing
the number of SGS-sweeps only moderately increased the number of iterations, however CPU-time decreased
substantially, with best efficiency obtained when using only one SGS-sweep. In Table 6, a comparison is made
for computation of Case 1, Case 9, and Case 10 using one and three SGS-sweeps. Using one SGS-sweep
proves to be the most efficient strategy for all cases. With respect to the conventional, well tuned method
‘rk5/3-s’, the required CPU time is reduced by a factor of almost 5 for the subsonic and by more than 5
for the transonic cases, as can be seen by comparison with Table 4.

5.3.4. Influence of mesh refinement on convergence behavior

The implicit step of the Runge–Kutta/Implicit method employs Symmetric Gauss–Seidel iteration to
approximately solve Eq. (24), and the question arises whether mesh density may influence convergence prop-
erties. To assess this effect, viscous flow is computed on three successively refined meshes, where the mesh with
320 · 64 cells used previously represents the medium mesh. Analogously to the Reynolds number variation,
the subsonic conditions of Case 1 from Ref. [40] are used, and pure second order reconstruction of variables
without limiting is employed. The Runge–Kutta/Implicit scheme is used with the parameters previously deter-
mined as most efficient, namely the 3 stage scheme with only one SGS sweep to solve Eq. (24) combined with
artificial speed of sound in Eq. (26). Fig. 15 displays the corresponding convergence histories, and Table 7
summarizes the computational performance with respect to CPU-time, number of iterations, and convergence
rate. As can be seen from Fig. 15 and Table 7, convergence properties are almost unaffected by mesh refine-
ment, and the present Runge–Kutta/Implicit method yields an average convergence rate of about 0.825 on all
meshes.

6. Concluding remarks

A computational approach was derived which addresses two sources of stiffness when solving fluid dynamic
equations, namely discrete stiffness associated with high aspect ratio cells, and analytical stiffness occurring
when the Mach number approaches zero. The Runge–Kutta/Implicit method, where an explicit Runge–Kutta
time integration was combined with the solution of an implicit system of equations, had already demonstrated
its efficiency for computations on highly stretched meshes in earlier work. To also address analytical stiffness
arising from the disparity of eigenvalues when approaching the incompressible limit, an artificial speed of
sound was introduced into the implicit system of discrete equations. This allowed the extension of the
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Table 7
Convergence behavior for mesh refinement study of Case 1

Grid CPU time [s] # iterations Convergence rate

160 · 32 111 160 0.829
320 · 64 450 152 0.820
640 · 128 1996 156 0.825
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Runge–Kutta/Implicit method to incompressible flows without compromising its efficiency. The artificial
speed of sound is of the order of the main flow speed, where its definition followed the practice of low speed
preconditioning when extending compressible codes toward incompressible flows. In contrast to common low
speed preconditioning however, no additional matrix for preconditioning was required, since the artificial
speed of sound was consistently introduced into both, the explicit residual on the right hand side and into
the implicit terms on the left hand side of the discrete system of equations. Due to the formulation of the invis-
cid flux Jacobians in terms of Mach number, the implementation of the artificial speed of sound could be
achieved with negligible additional effort, and the efficient, storage reducing evaluation of flux Jacobians in
the implicit step was not compromised.

The present Runge–Kutta/Implicit method was applied for solving different cases of compressible and
incompressible, inviscid and viscous turbulent airfoil flow. Favorable convergence rates were achieved ranging
from 0.45 to 0.65 for inviscid flow and from 0.75 to 0.85 for viscous flow. Convergence was observed to be
almost independent of Mach number, confirming the successful extension of the method to address analytical
stiffness. For the investigation with respect to discrete stiffness, a Reynolds number variation by more than an
order of magnitude was performed. Despite cell aspect ratios increasing from 3000 to 50,000, convergence was
only affected by roughly a factor of 2, confirming the ability to address discrete stiffness. A reduction of free
stream Mach number to 0.001 in the Reynolds number variation study demonstrated that this capability was
not impaired for incompressible flows. The implicit step of the Runge–Kutta/Implicit method thus acts as a
preconditioner to the explicit Runge–Kutta which proved to effectively address both, discrete stiffness caused
by high aspect ratio cells, and stiffness in the analytical equations when the Mach number approaches zero.

It was further shown that appropriate initialization for solving the implicit system allowed a CFL limit of
CFL = 1000 not only for a 5 stage scheme but also for a 3 stage scheme, resulting in a substantial reduction of
computation time while maintaining similar convergence rates. Additional increase in computational efficiency
was achieved by using just one SGS-sweep per Runge–Kutta stage, and compared to a well tuned conven-
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tional method CPU times were reduced by half an order of magnitude. Finally it was demonstrated that con-
vergence properties of the method were independent of mesh density.
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